MICHÈLE VERGNE Multiple Bernoulli Series and Volumes of Moduli Spaces of Flat Bundles over Surfaces

نویسندگان

  • VELLEDA BALDONI
  • ARZU BOYSAL
چکیده

Using Szenes formula for multiple Bernoulli series, we explain how to compute Witten series associated to classical Lie algebras. Particular instances of these series compute volumes of moduli spaces of flat bundles over surfaces, and also multiple zeta values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Bernoulli series and volumes of moduli spaces of flat bundles over surfaces

Using Szenes formula for multiple Bernoulli series, we explain how to compute Witten series associated to classical Lie algebras. Particular instances of these series compute volumes of moduli spaces of flat bundles over surfaces, and also certain multiple zeta values.

متن کامل

Symplectic Geometry on Moduli Spaces of Holomorphic Bundles over Complex Surfaces

We give a comparative description of the Poisson structures on the moduli spaces of flat connections on real surfaces and holomorphic Poisson structures on the moduli spaces of holomorphic bundles on complex surfaces. The symplectic leaves of the latter are classified by restrictions of the bundles to certain divisors. This can be regarded as fixing a “complex analogue of the holonomy” of a con...

متن کامل

Universal moduli spaces of surfaces with flat bundles and cobordism theory

For a compact, connected Lie group G, we study the moduli of pairs (Σ,E), where Σ is a genus g Riemann surface and E →Σ is a flat G-bundle. Varying both the Riemann surface Σ and the flat bundle leads to a moduli space Mg , parametrizing families Riemann surfaces with flat G-bundles. We show that there is a stable range in which the homology of Mg is independent of g. The stable range depends o...

متن کامل

ar X iv : a lg - g eo m / 9 70 30 04 v 1 5 M ar 1 99 7 Geometry of Moduli Spaces of Flat Bundles on Punctured Surfaces

For a Riemann surface with one puncture we consider moduli spaces of flat connections such that the monodromy transformation around the puncture belongs to a given conjugacy class with the property that a product of its distinct eigenvalues is not equal to 1 unless we take all of them. We prove that these moduli spaces are smooth and their natural closures are normal with rational singularities.

متن کامل

Proceedings of the Arnoldfest SYMPLECTIC GEOMETRY ON MODULI SPACES OF HOLOMORPHIC BUNDLES OVER COMPLEX SURFACES

We give a comparative description of the Poisson structures on the moduli spaces of at connections on real surfaces and holomorphic Poisson structures on the moduli spaces of holomorphic bundles on complex surfaces. The symplectic leaves of the latter are classiied by restrictions of the bundles to certain divisors. This can be regarded as xing a \complex analogue of the holonomy" of a connecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013